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Solutions Problem 1
Since the functional that describes the length of a C1 curve parametrized by
x(t), t ∈ [a, b], is

J(x(t)) =

∫ b

a

√
1 + (ẋ(t))2dt,

the corresponding Lagrangian function is

L(t, x, ẋ) =
√

1 + (ẋ)2.

Notice that this Lagrangian function does not depend explicitely on x.
Therefore, the Euler-Lagrange equation writes

d

dt

∂L

∂ẋ
(t, x(t), ẋ(t)) =

d

dt

ẋ(t)√
1 + (ẋ(t))2

= 0

which means that the function t → ẋ(t)√
1+(ẋ(t))2

is constant on [a, b]. Denote

c ∈ R this constant value. For all t ∈ [a, b], we have

ẋ(t) = c
√

1 + (ẋ(t))2

so, if c = 1, then
ẋ(t) = 0

and, if c 6= 1, then

ẋ(t) =
( c2

1− c2
) 1

2
.

Hence, ẋ(t) is constant on [a, b] so x(t) is a straight line defined on [a, b].

Solutions Problem 2
Let x(t), t ∈ [a, b], be a minimizer of the problem. For any curve x̄(t), t ∈
[a, b], such that x̄(a) = x0 and x̄(b) is free, define the corresponding pertur-
bation h(t) = x̄(t)−x(t), t ∈ [a, b]. This perturbation satisfies h(a) = 0 but
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h(b) is free. Therefore, the fundamental formula of the calculus of variations
writes

∆C(h) =

∫ b

a

(∂L
∂x

(t, x(t), ẋ(t))− d

dt

∂L

∂ẋ
(t, x(t), ẋ(t))

)
h(t)dt

+
[∂L
∂ẋ

(t, x(t), ẋ(t))h(t)
]b
a

+
[
L(t, x(t), ẋ(t))δt

]b
a

=

∫ b

a

(∂L
∂x

(t, x(t), ẋ(t))− d

dt

∂L

∂ẋ
(t, x(t), ẋ(t))

)
h(t)dt

+
∂L

∂ẋ
(b, x(b), ẋ(b))h(b).

The curve x being a minimizer, we must have

∆C(h) ≥ 0 (1)

for each h and, by linearity of ∆C, we get

∆C(h) = 0 (2)

for each h. In particular, this conditions holds for every perturbation h
satisfying h(b) = 0 for which, combining equations (1) and (3), we get∫ b

a

(∂L
∂x

(t, x(t), ẋ(t))− d

dt

∂L

∂ẋ
(t, x(t), ẋ(t))

)
h(t)dt = 0.

This means that the standard Euler-Lagrange equation

∂L

∂x
(t, x(t), ẋ(t)) =

d

dt

∂L

∂ẋ
(t, x(t), ẋ(t)), t ∈ [a, b],

still holds. As a result, for every perturbation h, the integral involved in
equation (1) vanishes and we get

∂L

∂ẋ
(b, x(b), ẋ(b))h(b) = 0.

Since h(b) is arbitrary, this leads to the additional optimality condition

∂L

∂ẋ
(b, x(b), ẋ(b)) = 0

Solutions Problem 3
Let x(t), t ∈ [a, tf ], be a minimizer of the problem. For any curve x̄(t), t ∈
[a, tf + δtf ], such that x̄(a) = x0 and x̄(tf + δtf ) = φ(tf + δtf ), define the
corresponding perturbation h(t) = x̄(t) − x(t), t ∈ [a,max{tf , tf + δtf}]
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(either x or x̄ can be considered 0 if not well defined). The fundamental
formula of the calculus of variations writes

∆C(h) =

∫ tf

a

(∂L
∂x

(t, x(t), ẋ(t))− d

dt

∂L

∂ẋ
(t, x(t), ẋ(t))

)
h(t)dt

+
[∂L
∂ẋ

(t, x(t), ẋ(t))δx(t)
]tf
a

+
[(
L(t, x(t), ẋ(t))− ẋ(t)

∂L

∂ẋ
(t, x(t), ẋ(t))

)
δt
]tf
a

=

∫ tf

a

(∂L
∂x

(t, x(t), ẋ(t))− d

dt

∂L

∂ẋ
(t, x(t), ẋ(t))

)
h(t)dt (3)

+
[∂L
∂ẋ

(t, x(t), ẋ(t))δx(t)
]tf
a

+
(
L(tf , x(tf ), ẋ(tf ))− ẋ(tf )

∂L

∂ẋ
(tf , x(tf ), ẋ(tf ))

)
δtf

Using a similar argument as in problem 2, we have

∆C(h) = 0 (4)

for each h since x is a minimizer. Considering a perturbation h preserving
the final time (δtf = 0 and so δx(tf ) = 0 since x̄(tf ) = φ(tf ) = x(tf )), we
see that the standard Euler-Lagrange equation still holds. As in problem
2, the integral involved in equation (4) vanishes for every perturbation h.
Furthermore, using the fact that δx(a) = 0 (always true since x(a) = x0)
and combining equations (3) and (4), we get

∂L

∂ẋ
(tf , x(tf ), ẋ(tf ))

(
δx(tf )− ẋ(tf )δtf

)
+ L(tf , x(tf ), ẋ(tf ))δtf = 0. (5)

But x(tf ) = φ(tf ) so
δx(tf )
δtf

= φ′(tf ). Plugging in (5), we get the additional

optimality condition

∂L

∂ẋ
(tf , x(tf ), ẋ(tf ))

(
φ′(tf )− ẋ(tf )

)
+ L(tf , x(tf ), ẋ(tf )) = 0. (6)

which is called the transversality condition.
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