Euler-Lagrange equations
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Solutions Problem 1
Since the functional that describes the length of a C! curve parametrized by
x(t), t € [a,b], is

b
J(x(t)) = / I+ @),
the corresponding Lagrangian function is
L(t,z,2) = /14 (2)2.

Notice that this Lagrangian function does not depend explicitely on =x.
Therefore, the Fuler-Lagrange equation writes

d oL A
7 g5 (he(t),2(t) = T GOE 0

which means that the function ¢ — ——22_ is constant on [a, b]. Denote
V1 (t))> ’

¢ € R this constant value. For all ¢ € [a, b], we have
() = e/ 1+ (2(t))?
so, if ¢ =1, then
(t) =0

and, if ¢ # 1, then
2

#(t) = (liCQ) '

Hence, (t) is constant on [a, b] so x(t) is a straight line defined on [a, b].
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Solutions Problem 2

Let x(t), t € [a,b], be a minimizer of the problem. For any curve Z(t), t €
[a, b], such that Z(a) = xo and Z(b) is free, define the corresponding pertur-
bation h(t) = z(t) — x(t), t € [a,b]. This perturbation satisfies h(a) = 0 but



h(b) is free. Therefore, the fundamental formula of the calculus of variations
writes

b
ac() = [ (Grtate). i) - 5 57 o ale). 3(0) ) hie)ds

¥ [% t,:c(t),j:(t))h(t)r + [L(t,x(t),ac(t))at}

The curve x being a minimizer, we must have

AC(h) >0 (1)
for each h and, by linearity of AC, we get

AC(h)=0 (2)

for each h. In particular, this conditions holds for every perturbation A
satisfying h(b) = 0 for which, combining equations (1) and (3), we get

b
/a (Z’;(t,x(t),gb(t)) = igﬁ(t,x(t),j:(t))>h(t)dt — 0.

This means that the standard Euler-Lagrange equation

oL ) d 0L .
%(ta x(t)a I‘(t)) - %%(u I(t), .Z‘(t)), te [CL, b]v

still holds. As a result, for every perturbation h, the integral involved in
equation (1) vanishes and we get

gi’(b,z(b),i(b))h(b) = 0.

Since h(b) is arbitrary, this leads to the additional optimality condition

L
O (b.2), 50 = 0
Solutions Problem 3
Let x(t), t € [a,ts], be a minimizer of the problem. For any curve Z(t), t €
la,ty + 0ty], such that Z(a) = xo and Z(tf + 0ty) = ¢(ty + 0ts), define the
corresponding perturbation h(t) = z(t) — x(t), t € [a,max{ty,t; + ots}]



(either = or & can be considered 0 if not well defined). The fundamental
formula of the calculus of variations writes

AC(R) :/af (‘Z(t,x(t),x(t))— St (t), (1)) bt

+ [%(t,x(t),a‘;(t))ém(t) :f

+ [(L(t,x(t),:b(t)) - :b(t)%(t, x(t),ac(t)))at}

= [ (G0 - Gagesesm)nne @)

+ [‘z)’;(t,x(t),:t(t))ax(t) )

+ (Lltg aty).lt) — () 52 (b wlty), iE) ) ot
Using a similar argument as in problem 2, we have
AC(h) =0 (4)

for each h since x is a minimizer. Considering a perturbation h preserving
the final time (6t; = 0 and so dx(ty) = 0 since Z(ts) = ¢(ty) = x(ty)), we
see that the standard Euler-Lagrange equation still holds. As in problem
2, the integral involved in equation (4) vanishes for every perturbation h.
Furthermore, using the fact that dz(a) = 0 (always true since z(a) = x0)
and combining equations (3) and (4), we get

gi(tf’x(tf)a i(tf))(h(tf) - fb(tf)&f) + L(tg, x(ty), 2(tr))dty = 0. (5)

But z(tf) = ¢(ty) so &ggf) = ¢'(ty). Plugging in (5), we get the additional
optimality condition

O byt 20 (9(0) = #(19)) + Lty atg), (01 = 0. (6)

which is called the transversality condition.



